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1. Introduction

Our quest was to produce a gridded global surface
temperature dataset with an accuracy and a spatial
resolution fine enough to clearly identify and delin-
eate regions with significant monthly scale climate
anomalies. Due to the limited observations and inter-
national exchange of high quality in situ data, satel-
lite-derived surface temperature data would be
required. Reynolds and Smith (1994) already produce
a satellite–in situ blended sea surface temperature data-
set of the quality and resolution required. But until
recently, no high quality satellite-derived land surface
temperature dataset was available to blend with in situ
observations.

Deriving monthly scale land surface air tempera-
tures poses significant problems for researchers. Land
temperatures are far more variable, both in time of day
and from day to day, than sea surface temperatures
(SST). The inability of infrared emissions from the

surface to reach a satellite during cloudy conditions
biases infrared temperature retrievals to cloud-free
times. Therefore, the authors developed a methodol-
ogy to derive surface temperatures from passive mi-
crowave emissions that are not biased by most cloud
conditions (Basist et al. 1998; Williams et al. 2000).
This method makes pixel by pixel assessments of the
surface emissivity and adjusts the observed brightness
temperature accordingly. While the accuracy and spa-
tial resolution were high enough for use in this global
product, this approach cannot derive surface tempera-
tures over most snow and ice surfaces.

However, providing full land coverage in the in situ
data-sparse Tropics is very valuable. For land surface
temperatures, these satellite-derived analyses were
blended with and anchored to in situ mean monthly
temperature observations. Then the land and ocean
observations were merged to produce near-global cov-
erage. The spatial resolution of the dataset was defined
by the existing 1° � 1° SST database. The Special Sen-
sor Microwave/Imager (SSM/I) data could provide
1/3° resolution but averaging up to the SST’s 1° � 1°
made the dataset more robust by helping remove out-
liers (the averaging being done with a biweight ap-
proach; Lanzante 1996). The temporal resolution,
monthly, was defined by high quality internationally
exchanged in situ climate reports that are more reli-
able than calculating, for example, weekly means from
incomplete synoptic reports. And the period of record
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was governed by data availability from the passive mi-
crowave satellite instrument used. The data start in
January 1992 and are updated about 10 days after the
end of a month.

The exact definition of surface in this surface tem-
perature product varies with the data source. Sea sur-
face temperatures, for example, come from a blend of
near-surface in situ observations and IR skin tempera-
ture observations. In situ land observations are point
measurements of near-surface air temperature, usually
taken ~1.5 m above the ground. And the microwave
emissions observed by the SSM/I originate primarily
from the earth’s surface in bare ground conditions but
from the canopy in vegetated environments. Because
each of these data have different biases relative to a
“true” surface temperature, the final product only uses
anomalies from each data source. Using only monthly
anomalies removes the major biases not only to the
true surface temperature but also biases to the time of
day the observations were made (Williams et al.
2000).

2. Sea surface temperature data

The source of sea surface temperature data is the
well-known National Oceanic and Atmospheric
Administration (NOAA) operational 1° latitude by
1° longitude gridded dataset (Reynolds and Smith
1994; Reynolds and Marsico 1993). The source data
include ship and buoy in situ data as well as satellite-
derived SSTs. The satellite observations are from the
infrared window channels on the Advanced Very High
Resolution Radiometer (AVHRR) that is flying on the
NOAA polar-orbiting satellites. These data are pro-
duced operationally by NOAA’s Environmental Sat-
ellite, Data, and Information Service (NESDIS). The
satellite SST retrieval algorithms are “tuned” by
regression against quality controlled drifting buoy
data.

Quality control procedures include tracking tests
to remove ship or buoy observations with unlikely po-
sitions. All observations, both in situ and satellite, are
discarded if the SST value is less than �2°C or greater
than 35°C or if the SST anomaly lies outside the
�3.5 times the climatological standard deviation.
These tests remove the worst data. Biases in satellite-
derived SSTs relative to in situ data, such as those
caused by volcanic eruptions, are adjusted for using a
spatial smoothing technique. The final SST product is
based on optimum interpolation (OI) at a 1° grid.

3. In situ land surface air temperature
data

The source of in situ temperature data from land
stations is the Global Historical Climatology Network
(GHCN; Peterson and Vose 1997). GHCN is a cen-
tury-scale dataset with more than 7000 stations report-
ing mean monthly temperature derived from daily or
more frequent weather observations. While several
dozen different sources contributed data to GHCN,
only two sources are used for recent data. One of these
is the U.S. Historical Climatology Network (USHCN;
Easterling et al. 1996). USHCN data come from 1200
of the highest quality U.S. cooperative stations.
However, data from USHCN are not available until
6–9 months after the observations were made. The sec-
ond source of in situ data comes in near–real time.
These are data transmitted over the Global Telecom-
munications System (GT) in CLIMAT code.

Climate data from approximately 1400 stations are
exchanged internationally each month. A station’s
monthly mean temperature is calculated by the source
station or country before being transmitted. While
thousands more stations transmit synoptic messages
over the GTS, monthly means derived from synoptic
reports have serious data quality problems primarily
because synoptic reports are seldom complete (e.g.,
Schneider 1992). Therefore, no data derived from syn-
optic sources are used in GHCN. The internationally
agreed upon standard for transmission of CLIMAT
messages calls for the data to be transmitted by the
eighth day of the following month, although some data
arrive later.

Not all CLIMAT data are incorporated into GHCN.
In order to produce reliable quality control, robust
measures of a station’s long-term monthly mean and
variance need to be produced. So CLIMAT stations
without at least 10 yr of available data are not incor-
porated into GHCN.

The GHCN approach to quality control is to sub-
ject the data to a suite of tests (Peterson et al. 1998b):
tests on the entire source dataset, tests looking at the
time series as a whole, and tests on individual data
points to make sure they are reasonable from a time
series and a spatial perspective. If an individual data
point is within 2.5 � of its long-term monthly mean it
passes the final quality control (QC) step. Data points
between 2.5 and 5.0 � from the mean undergo a spa-
tial check to make sure neighboring stations also in-
dicate that it was an exceptionally warm or cold month.
If a neighbor agrees, the data point is considered good.
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If the data from neighboring stations do not concur or
if the datum was over 5.0 � from the long-term mean,
the datum is considered bad. However, every time new
data points for that month are added, the potential for
closer neighbors and improved spatial checking exists
so the “bad” data points are reevaluated.

The vast majority of the transmitted CLIMAT
messages have acceptable mean temperature data.
GHCN’s quality control removes the majority of the
erroneous data caused by errors in digitization or
transmission. However, a very few good data points
without close enough neighbors to verify their ex-
treme climate signal are probably removed from the
dataset in this process and some erroneous but not
extreme data points are retained, particularly in re-
gions with high temporal variability. For example,
when identical mean temperatures are transmitted for
two consecutive months, it seems suspicious but pos-
sible. GHCN’s QC does not flag such indications of
possible problems until three data points in a row
are identical.

Another problem with surface data is potential in-
homogeneities in the station time series due to factors
such as changes in location, new instrumentation, or
changes in observing practices. GHCN mean tempera-
ture data undergo rigorous homogeneity testing
(Peterson et al. 1998a). However, the GHCN adjust-
ment methodology (Easterling and Peterson 1995;
Peterson and Easterling 1994) requires 5 yr of data on
either side of a potential discontinuity in order to make
robust adjustments for the artificial change in the data
record. Therefore, data from 1992 to the present can
contain some inhomogeneities. However, GHCN
minimizes the potential for inhomogeneities due to
changes in methods used to calculate the mean
monthly temperature from the
daily or more frequent observa-
tions by preserving separate du-
plicate mean temperature time
series for data from different
sources if the duplicate time
series are slightly different
(Peterson and Vose 1997).

Under the auspices of the
Global Climate Observing Sys-
tem (GCOS), effort is under way
to encourage the exchange of
data from the best climate sta-
tions around the world. Over the
course of the next year or two,
the GCOS surface network is ex-

pected to improve the quality and spatial distribution
of stations reporting via CLIMAT (Peterson et al.
1997). The present distribution of CLIMAT stations
leaves some areas, particularly in the Tropics,
underrepresented. Figure 1 shows the locations of
GHCN stations with at least 5 yr of data available
during the period 1992–98. Unfortunately, not all of
these stations report every month. A typical month has
between 1000 and 1100 CLIMAT reports from sta-
tions with at least 5 yr of data between 1992 and 1998,
with large portions of the Tropics exchanging little or
no in situ climate observations.

4. Satellite-derived land surface air
temperature data

A new method to derive land surface temperatures
from SSM/I data was described in Basist et al. (1998).
This method uses the relationship among the seven
different microwave channels provided by the Defense
Meteorological Satellite Program (DMSP) instrument
to identify the land surface type and determine the
percentage of a pixel that is liquid water each time the
satellite flies overhead. Since water has an emissivity
of 0.65 at 19 GHz, the impact surface wetness has on
the observed brightness temperature can be deter-
mined. This adjustment is empirically calculated by
using the relationship between in situ temperature
measurements and satellite brightness temperature at
the SSM/I frequencies.

Williams et al. (2000) expanded on this method
using other surface and atmospheric conditions based
on statistical relationships between in situ and satel-
lite observations at the time of satellite overpass.

FIG. 1. Location of GHCN stations with 5 yr of data available during the 1992–98 period.
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Intersatellite calibration and intrasatellite drift calcu-
lations were also addressed using comparisons with
in situ observations. The results of these calibration
procedures were independently validated with a dif-
ferent, higher-density network of in situ stations. This
work was done using both instantaneous 1/3° pixel
analyses and monthly 1° � 1° analyses.

A flowchart of our SSM/I processing steps is
shown in Fig. 2. Starting with the 1/3° instantaneous
pixel analysis described in Williams et al. (2000),
1° � 1° instantaneous temperatures were created.
Morning and afternoon overpasses were processed
separately. Over the area of a 1° � 1° grid box there
can be considerable change in elevation and hence
temperature. Therefore, a single pixel temperature may
not be representative of the average grid box as a
whole. An elevation-related temperature adjustment
was created for each pixel so that its temperature could
better represent the whole grid box for those times
when data from all nine pixels were not available. The
adjustment was based on the average difference be-
tween that pixel’s temperature and the concurrent
mean grid box temperature. Each pixel would have a
different adjustment value for each month of the year

that was calculated from all the observations during
all the years of data for that month.

To minimize the impact of extreme values in the
above analyses, a biweight mean was used in the cal-
culations (Lanzante 1996). If the data are normally
distributed, biweight means are very similar to arith-
metic means. But because biweight calculations use a
nonlinear decrease in the weight given to data points
the farther they are away from the median with val-
ues 5 � (in this case) away from the median given zero
weight, biweight analyses are minimally impacted by
occasional odd values.

The first step in creating monthly values was to
calculate 1° � 1° grid box temperatures for each satel-
lite overpass. This value is simply the biweight mean
of all adjusted pixel temperatures available at that time.
Some orbits would have as few as one valid pixel tem-
perature for use in the calculation of a grid box tem-
perature, but most of the time all nine were available
or none at all. Unfortunately, orbital gaps mean that
some grid boxes have no data for one or more days in
a row. This problem was addressed in two ways. The
first way was to fill in the missing data for a grid box
using a linear interpolation between observations be-
fore and after the missing days. Because of the auto-
correlation of weather and climate, this interpolation
improved monthly means. For example, if the fourth
and sixth day of the month were cold, it is probable
that the fifth was as well.

If the orbital gaps become too large, significant
weather events can be missed entirely, which would
decrease the accuracy of the analyses. Therefore,
monthly means were not produced if there were seven
or more days in a row missing, two cases of six days
in a row missing, or three cases of five or more days
in a row missing. These numbers were derived by bal-
ancing the need for accuracy with the benefit of hav-
ing some data for the area present. Complete daily
coverage would improve the results but is impossible
to achieve. Monthly means were also not determined
if there were five or more observations of snow. The
SSM/I algorithm cannot derive surface temperature
when there is snow on the ground. Treating snow obser-
vations as missing adds a small warm bias to the analy-
ses of some grid box months, so these need to be limited.

For those months with adequate observations,
arithmetic means of the daily values (real or linearly
interpolated) were calculated. The next step was to turn
the monthly value into an anomaly of the monthly
period of record value for that grid box. At least 5 yr
of data for that month are required for the base period

FIG. 2. A flowchart of the SSM/I-derived surface temperature
processing steps.
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from which the anomalies are calculated. Not all grid
boxes have this. For example, for the period from 1992
to the present, a grid box may have only three
Februarys without snow. In such cases, no February
SSM/I data from this grid box could be used. Up
through this stage, the SSM/I processing is still per-
formed separately on morning and afternoon over-
passes. The final step of making mean monthly
temperatures is to calculate the mean of the morning
anomaly and the evening overpass anomaly.

Additional quality control tests were applied at
various stages in this process. For example, a mean for
each 1/3° pixel was calculated from all years of a par-
ticular month and any data point greater than 20°C
from the long-term mean was discarded. Extremely
high (greater than 50°C) or low (less than �30°C) val-
ues were also discarded if they were more than 2.5 �
from the long-term pixel mean. Additionally, if the
elevation-related adjustment for that pixel was larger
than �10 C, data from that pixel were only used if it
was within 1 � of its mean. Furthermore, because the
accuracy diminishes when we have fewer observations
per grid box and some of the SSM/I-derived observa-
tions in the tail of the distributions have significant er-
rors, as indicated in Williams et al. (2000), greater care
must be taken when only one or two pixels in the grid
box have data. Therefore, grid box values were not
calculated if there was only one pixel and it was greater
than 1 � from its long-term mean for that month of the
year, or there were two pixels with a mean deviation
in excess of 1.5 �.

Williams et al. (2000) indicated that the mean
monthly 1° � 1° SSM/I-derived temperature anoma-
lies represented the climate of the area very well: they
had a temporal correlation (r) with in situ anomalies
greater than 0.8 and the differences from in situ anoma-
lies have a variance of 0.76 with low kurtosis and
skewness. Each step of the monthly derivation de-
scribed here was designed to ensure that the analysis
would be robust in diverse areas of the world and was
evaluated to ensure that it preserved or improved the
accuracy described in Williams et al. (2000). Using the
dense in situ network in the eastern United States as
verification, as per Williams et al. (2000), the more
complex monthly averaging approach described above
reduces the rms error to 0.71°C. By comparison, a
similar analysis of in situ stations indicates that this
error is about twice that of a grid box value derived
from a single in situ station and approximately the
same as interpolating a single in situ station’s data
from 2° away.

5. Blending the data

Many possible approaches exist for combining dif-
ferent sources of data into one dataset. For example,
Smith et al. (1998) produced a full grid of SST using
the spatial and temporal covariance of the sea surface
temperature field along with the available historical
data. But every approach involves certain assumptions
or trade-offs. Within Smith et al.’s (1998) approach,
for example, is the assumption that the covariance pat-
tern developed in the satellite era is an appropriate
guide for interpolating data in earlier eras. One step
in evaluating options to use for combining GHCN
and SSM/I-derived observations, was comparison in
the United States with the dense U.S. cooperative net-
work serving as ground truth. These analyses indicated
that interpolating an in situ station anomaly value from
one degree away produced more accurate anomaly val-
ues than the SSM/I observations for that 1° � 1° grid
box. However, embedded within this evaluation was
the assumption that all international data transmitted
over the GTS would have the same high quality as the
U.S. data quality controlled and archived at the Na-
tional Climatic Data Center (NCDC).

Unfortunately, analysis of the global in situ data
base indicates that this assumption simply is not valid.
Individual satellite-derived and in situ values can have
significant errors. Therefore, our approach to blend-
ing the data focused on minimizing the impact of sig-
nificant though rare errors in each of the datasets rather
than producing a dataset with a slightly more accurate
mode. Toward this end, we (a) transformed the data
into anomalies to the 1992–present base period so all
interpolation or merging was done in anomaly space;
(b) interpolated GHCN data out only a modest distance
where the interpolated values are more reliable, cov-
ering a 5° � 5° square centered on the station;
(c) weighted all GHCN-derived values equally, that is,
an anomaly value interpolated out 2° is given the same
weight as a station in that 1° � 1° grid box; and (d) gave
the SSM/I anomaly value for a 1° � 1° grid box the same
weight as a single in situ station. This means that for
land areas with many in situ observations, the final
product primarily represents in situ anomalies. If there
is only one station in the vicinity, the product reflects
both the interpolated in situ and SSM/I-derived anoma-
lies equally. Where no in situ data are present, the final
product is purely SSM/I-derived anomalies (e.g., in much
of the Tropics) or missing (e.g., snow-covered areas).

To ensure that changes in satellite drift or degra-
dation of the SSM/I instrument do not impart a bias
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to the product, each month’s SSM/I analysis was ad-
justed to anchor it on the in situ observations. The dif-
ference between every GHCN station monthly
temperature anomaly and the SSM/I anomaly for the
1° × 1° grid box containing the station, if available,

was calculated. The monthly anomaly used in this
calculation was based on a mean of only those years
that have both GHCN and collocated SSM/I tempera-
tures. The mean difference for each calendar month
was determined. Next, the monthly time series of these
differences was smoothed with a three-month running
average filter to allow more data points to contribute
to the calculation of the adjustment. This smoothed
difference value was then added to every 1° � 1° SSM/I
grid box anomaly value. As examination of Fig. 3 in-
dicates, these adjustments are small during the time
periods when the full period of record data for a satel-
lite was available for calculating the intersatellite ad-
justment (Williams et al. 2000).

The SSM/I and in situ observations were gridded
to the same 1° � 1° grid used in the SST analysis.
Using a land/sea mask and an ice value, SST data were
limited to open ocean. The land data were supplied
by the blended GHCN–SSM/I field. However, GHCN
temperature anomalies were interpolated out two ad-

FIG. 3. Smoothed differences between collocated in situ and
SSM/I anomalies. These values are applied to the SSM/I-derived
anomalies to anchor the satellite analysis on the in situ values.

FIG. 4. Gridded surface temperature anomaly fields, in °C, for Jan 1998 from (upper left) SSTs only, (upper right) GHCN in situ
stations only, (lower left) SSM/I-derived surface temperature only, and (lower right) the full blended product.

COLOR
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ditional 1° � 1° grid boxes in all directions that allow
coastal stations to provide information over the ocean.
In these cases, where there were no SST data avail-
able, that is, over the frozen Arctic Ocean, GHCN is
used to provide anomalies for those grid boxes.
However, if SST data were available, the values for those
grid boxes come from SST data alone. Consequently,
no compositing of the two data sources was done
along coast lines. However, if a 1° � 1° grid box does
actually contain a GHCN station, such as a remote
island, the anomaly used for this grid box comes from
the land data and contains no input from the SST data
source. Interestingly, the use of land data in remote
islands is hard to detect because their anomalies are
so close to the surrounding SST anomaly but along
coastal zones there can be regions of strong con-
trast. Figures 4 and 5 show the input data and final
product for two months, January 1998 and August
1998, respectively.

6. The near-global temperature dataset

The final 1° � 1° product is not fully global. Snow-
and ice-covered regions are limited to in situ obser-
vations. Note the excellent coverage in Figs. 4d and
5d in the in situ data-sparse Tropics. Clearly there is a
spatial coherence to the structure of the monthly cli-
mate signal captured by this dataset. While it is not
error free, it does clearly define the regions of signifi-
cant climate anomalies and is therefore very useful for
monitoring the climate in regions that were previously
data sparse. Because it provides information in data-
sparse areas, quantifying the accuracy of the blended
dataset throughout the world is difficult. However, we
continue to assess the product’s accuracy whenever
supplemental data for a region becomes available.

The blended global surface temperature anomaly
dataset version 1A is available from the NCDC/
NESDIS/NOAA through anonymous ftp (http://
www.ncdc.noaa.gov/ol/climate/research/blended/
blended.html). This site also contains links to monthly

FIG. 5. The same as Fig. 4 but for Aug 1998.
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images of the anomaly fields. The data start in January
1992 and are updated about 10 days after the end of
the month. Two months during this period do not have
adequate SSM/I data to create any SSM/I-derived
monthly temperature anomalies. One of the planned
improvements will be reprocessing the orbital data
archived at NCDC. This will help fill in some miss-
ing data points and regrid the SSM/I data in a more
rigorous fashion, which should improve the accuracy
of the final product. Data from SSM/I satellites with
different overpass times will also be incorporated.
Other ways to improve the SSM/I temperature algo-
rithm and blending of in situ and SSM/I-derived tem-
peratures will continue to be investigated.

The present product is clearly better than any of the
sources alone. For example, insights into the climate
can be obtained by seeing the transition between SST
and continental air temperatures, which in some in-
stances is very smooth and in other cases has abrupt
changes. The SSM/I-derived temperatures provide
dramatically improved coverage over in situ data in
some climatologically important areas and at the same
time the SSM/I temperatures are improved by anchor-
ing the monthly anomalies on in situ observations.
Blended together, the three sources of data provide
near-global coverage.
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